Engines & Fuel Cells Autumn 2018 Series 1

Ex. 1 Power system of a vehicle

The total power, P, needed from a vehicle's power system must be sufficient to compensate for *aerodynamic drag*, rolling resistance, changes in elevation, and to provide for vehicle acceleration and auxiliary power for vehicle accessories.

The power system may consist of a fuel cell plus peak power storage device(s). Criteria established by the Partnership for a New Generation of Vehicles (PNGV) specify that:

- a) The fuel cell system (without peak power device) must provide enough power to sustain a speed v = 55 mph on a road inclined with 6.5 percent grade.
- b) The output of the fuel cell system plus peak power device must allow acceleration for high speed passing of a = 3 mph/s on a level road from v = 65 mph.
- 1. Schematize the external forces acting on the vehicle.
- 2. Write a general expression for the total power necessary to drive the vehicle.
- 3. Estimate the minimum power needed to satisfy each of the two criteria established by the PNGV for a conventional mid-size passenger vehicle.

Thinking further:

- How to estimate the range of the vehicle, resp. dimension the energy storage?
- The solution to this problem can also be applied to ex. 1 of series 4.

Useful information:

1 mph = 1.609 km/h = 0.447 m/s

Assume typical temperature and pressure for driving conditions.

The road's angle of inclination, α , can be computed from the percent grade of its slope.

Solve the problem with the following hints, which can be assumed for the mid-size passenger vehicle:

Mass: m = 1350 kg (vehicle mass) + 250 kg (mass of passengers plus cargo) = 1600 kg

Coefficient of aerodynamic drag: $C_{\rm d}=0.3$ Area of the vehicle normal to flow direction: $A_{\perp}=2~{\rm m}^2$ Coefficient of rolling resistance: $C_{\rm r}=0.01$ Efficiency of motor, controller, and gearing: $\varepsilon=0.77$

Auxiliary power (lights, radio, wipers, air conditioner, cigarette lighter, etc.): $P_{\text{aux}} = 400 \text{ W}$

Fuel Cells 2018-09-19